
NASA Contractor Report 4108 

Investigation, Development, 
and Application of Optimal 
Output Feedback Theory 

Volume IV: Meusures of Eigenvalue1 
Eigenvector Sensitivity to  System 
Parameters and Unmodeled Dynamics 

Nesim Halyo 
Information G Control Systems, Incorporated 
Hampton, Virginia 

Prepared for 
Langley Research Center 
under Contract NAS 1- 15759 

National Aeronautics 
and Space Administration 

Scientific and Technical 
Information Division 

1987 



FOREWORD 

The work described in this report was performed by Information & Control Systems, 

Incorporated under Contract Number NAS1-15759 for the National Aeronautics and Space 

Administration, Langley Research Center, Hampton, Virginia. The work was sponsored 

by the Guidance and Control Division, Aircraft Guidance and Control Branch at Langley 

Research Center. Mr. R. M. Hueschen was the NASA Technical Representative monitoring 

this contract. Dr. N. Halyo directed the technical effort at ICs. 

iii 



ABSTRACT 

In this report, some measures of eigenvalue and eigenvector sensitivity applicable to 

both continuous and discrete linear systems are developed and investigated. An infinite 

series representation is developed for the eigenvalues and eigenvectors of a system. The 

coefficients of the series are coupled, but can be obtained recursively using a nonlinear 

coupled vector difference equation. 

A new sensitivity measure is developed by considering the effects of unmodeled dy- 

namics. It is shown that the sensitivity is high when any unmodeled eigenvalue is near 

a modeled eigenvalue. Using a simple example where the sensor dynamics have been 

neglected, it is shown that high feedback gains produce high eigenvalue/eigenvector sensi- 

tivity. The smallest singular value of the return difference is shown not to reflect eigenvalue 

sensitivity since it increases with the feedback gains. 

Using an upper bound obtained from the infinite series, a procedure to evaluate 

whether the sensitivity to parameter variations is within given acceptable bounds is devel- 

oped and demonstrated by an example. 
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I. INTRODUCTION 

Most complex systems of interest contain uncertainties in at least some parameters. 

Beyond this aspect, system parameters vary over the range of operating points in which the 

system is supposed to perform its basic objective. Finally, the system design model usually 

neglects some dynamic effects in order to simplify the design process and to accommodate 

nonlinear effects and avoid determining some subsystem characteristics. Therefore, in 

the design of the feedback control law, one of the most important considerations is the 

closed-loop system’s robustness. 

In this study, by system robustness we shall mean that the basic system properties or 

characteristics are sufficiently insensitive to the various system parameter variations and 

modeling errors to  perform the basic system objective. The feedback controller modifies the 

system matrix ( A )  to achieve a variety of system characteristics such as transient response, 

sensor and plant noise suppression, feedforward bandwidth, stability, etc. However, it is 

necessary that these characteristics be performed in an acceptable manner despite any 

unmodeled dynamics and other system parameter variations. 

To achieve these closed-loop system characteristics, the designer of the feedback con- 

trol law has a variety of methods at his disposal ranging from stochastic optimization 

methods such as full-state feedback LQG, output feedback, pole placement, classical fre- 

quency techniques, etc. The use of the stochastic output feedback and feedforward design 

techniques developed by the author [l] - [SI have proved to be suitable in many cases. 

When a feedback design is being considered, it is necessary to evaluate the robust- 

ness of the resulting closed-loop system. Since the feedback design produces a closed-loop 

system matrix, and this matrix is completely determined by its eigenvalues and eigenvec- 

tors, it s eem reasonable to assume that the desired system characteristics are implicitly 

contained in the closed-loop eigenstructure. Therefore, to evaluate the sensitivity of the 

system characteristics designed, it may be sufficient to consider the sensitivity of the sys- 

tem’s eigenvalues and eigenvectors. In this investigation, we will develop some measures 



of eigenvalue and eigenvector sensitivity to evaluate a given feedback design 

standpoint of robustness and try to establish some trends. 

Eigenvalue sensitivity has received some attention in the literature [6] - 

majority of the work on eigenstructure sensitivity deals with the la' derivat 

from the 

181. The 

ve of the 

eigenvalues and sometimes the eigenvectors with respect to a parameter. In some cases, 

the lSt derivative of the state trajectory is investigated. In other cases, the sensitivity of 

the type-1 property is studied. 

More recently, a frequency domain approach to robustness has been introduced [19] 

- [24]. This approach stems from a desire to  extend classical SISO sensitivity measures 

to MIMO systems. The measure of robustness used is the smallest singular value of the 

return difference matrix as a function of frequency. 

In this report, measures of system sensitivity based on the closed-loop eigenvalues and 

eigenvectors are developed. A new measure of sensitivity is introduced by investigating the 

effect of unmodeled dynamics. This measure is applied to  an example where the dynamics 

of a sensor are neglected in the model, as is often the case. It is shown that as the system 

gains are increased, the actual system eigenvalue sensitivity increases and may even lead 

to instability. Therefore, this measure of sensitivity requires that the feedback gains be 

maintained at  lower levels if possible. 

The fact that high feedback gains cause significant robustness problems, is usually 

first encountered when a high-gain design based on a linear model is simulated on a noisy 

and fully nonlinear simulation. In most complex physical systems, unmodeled dynamics 

occur due to nonlinear effects and the complexity which would be required to model all 

structural modes, electronic harmonics, etc. Thus the unmodeled dynamics are essentially 

a fact of life for the control designer. 

The sensitivity to unmodeled dynamics places a limit to how high the loop gains can 

realistically be set. 

The smallest singular value of the return difference, however, generally increases with 

2 



increasing feedback gains. This implies that the higher the feedback gains, the higher the 

system robustness! This trend of the singular value based sensitivity approach is puzzling 

and leads to the conclusion that the smallest singular value of the return difference is more 

a measure of stability margin and plant noise suppression properties rather than system 

sensitivity or robustness. 

Then, infinite series representations of the system eigenvalues and eigenvectors are 

developed. It is shown that the coefficients of the power series for the eigenvalues and 

eigenvectors can be recursively obtained. From this series representation, an upper bound 

on the variation in the eigenvalues and eigenvectors is obtained and applied to evaluate 

the sensitivity of an example. 
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11. AN INFINITE SERIES REPRESENTATION OF 

EIGENVALUES AND EIGENVECTORS 

Some of the most important characteristics of a linear system, whether continuous or 

digital, are contained in the eigenvalues and eigenvectors of that system. For example, the 

stability of the system is completely determined by the location of the eigenvalues; similarly, 

the damping ratios, the zeroes and poles, the modal behavior, etc. are determined by the 

system eigenvalues and eigenvectors. 

The linear systems which will be considered in this study are of the form 

k = A z + B u  , 

for continuous time systems, and 

for discrete time systems. In both the continuous and discrete system cases, the state x 

is considered to be a n-vector and the control u a r-vector. Thus, the system matrices A 

and 4 both have the dimensions n x n, while B and I' are dimensioned n x r .  

The system eigenvalues and eigenvectors are defined as those of the matrices A or 

4 according to whether the continuous system (1) or the discrete system (2) is under 

investigation. Thus, in both cases, we are interested in the eigenvalues and eigenvectors 

of a square matrix: In the following, we will derive an infinite series for the eigenvalues of 

the square matrix A;  the results, of course, are equally applicable to the discrete system 

matrix 4. 

In most systems of interest, the system matrix, A,  varies with the operating point; so 

that the system matrix A(p)  is a function of some parameter, say p .  In this study, we are 

interested in determining the variation in the eigenvalues and eigenvectors of the matrix 

A ( p )  as the parameter p varies. 
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A .  POWER SERIES FOR EIGENVALUES AND EIGENVECTORS 

Now suppose that we have an infinite series representation of the system matrix A(p)  

k=O 

Also suppose that X ; ( p )  and x ; ( p )  form an  eigenvalue-eigenvector pair for A(p) ;  i.e., 

Note that p = 0 corresponds to the case where A(0)  = A ,  is the system matrix for 

the reference operating point. Now, suppose that the eigenvalue Xi(p )  and the eigenvector 

x ; ( p )  have infinite series representations of the form 

00 

k=O 

00 

, l s i s n  , (6) 
k 

z i ( P )  = c z i k  P 
k=O 

Let us denote the smallest of the radii of convergence for the power series in (3), ( 5 )  

and (6) by d. So that all three power series converge absolutely within [-d, d ] .  Unless 

stated otherwise, we will consider p to belong to the interval [-d, d ] .  I 

In order to  understand and evaluate the changes in the system matrix A(p)  as the 

parameter, p ,  varies within [-d, d ] ,  it is of interest to find expressions for the coefficients 

of the infinite series, i.e., X i k  and X i k .  Rewriting (4), we obtain 

k ]  [g z i j  #] (7) 
j=O 

[E A k  P k ]  [g z i j  $1 = [e X i k  P 
k=O 

Using well-known properties of power series [ l ] ,  we obtain that within [-d, d] ,  
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k 

(9) C(Xij I- A j )  x i k - j  = O  , k 2 0 , l s i s n  
j = O  

From (9), it is seen that the coefficients of the power series satisfy a homogeneous 

difference equation of non-finite order. The case of k = 0, can be seen to  be a restatement 

of (4) when p = 0; i.e., 

which states that the coefficients Xi0 and xi0 form an eigenvalue-eigenvector pair for the 

matrix A(0)  = A,. This is already clear from ( 5 )  and (6); however, the higher order coef- 

ficients are the ones which contain information about the variations in the eigenstructure 

of A ( p )  as p varies within [-d, d ] .  For example, when k = 1, w e  have 

Since (11) contains n+ 1 scalar unknowns (i.e., zi1 and A i l ) ,  but only contains n equa- 

tions, it may appear that a solution cannot be obtained. However, since the eigenvector, 

x i ( p ) ,  is only determined up to  a constant factor, the coefficients x i ,  maintain one degree 

of freedom. On the other hand, the coefficients, X i k ,  are unique and can be determined 

from the set of equations in (9). 

To simplify the derivation, consider the case where A(0)  has distinct eigenvalues. 

Minor variations are required to treat the case where A(0)  has eigenvalues of multiplicity 

greater than 1. Let ei be the ith column of the n x n identity matrix, and let X o  be the 

non-singular matrix whose columns are the eigenvectors of A(0);  i.e., 

It follows that 
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A ,  = X ,  A, XF1 9 (13) 

where A, is a diagonal matrix containing the eigenvalues, {Xio ,  1 5 i 5 n}, of A(0) .  Let 

C;k be defined by 

Now (9) can be restated as 

, l < i < n  . 

where A j  is not necessarily diagonal when j > 0, but can be easily computed from (16). 

To show that we can recursively compute X;k and C;k ,  assume that {A+, c i j ,  0 5 j 5 

k - 1) are known and note that 

c;, = e; 9 

t?F(X;, I - A,) Cik = 0 

where (17) follows from (14); now pre-multiplying (15) by e: and using (17) and (18), it 

is seen that* 

k *Throughout this work, we use the convention that C j Z l  uj = 0 ,  whenever k < i. 
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k k -  1 

Note that X i k  does not depend on C;k as a result of (18) and can be computed using 

either of the equivalent expressions in (19) or (20). Now, to obtain the expression for C i k ,  

rewrite (15) in the form 

k 

(Xi, I - A,) Cik = ( A j  - X i j  I )  C i k - j  9 k L 1  (21) 
j = l  

As noted in (18), the diagonal matrix (Xi, I - A , )  has a zero as its ith diagonal element; 

so that the left-hand-side (LHS) of (21) is independent of the ith element of C i k ;  Le., e: C i k .  

Therefore, the i f h  element of C;k cannot be obtained from (21). However, the remaining 

elements of Cik can, in fact, be obtained from (21) since all the remaining elements on the 

diagonal of (Xi, I - A,) are non-zero. 

Let (Xi, I - A,)# represent the following pseudo-inverse 

It follows that 

where Ciki  is the i th component of c i k  which is not determined from (21). 

Since X;k is independent of C i k ,  it can be computed first and substituted into (23) 

to obtain the components of C i k ,  except for the ith component which will be shown to be 

arbitrary, presently. It follows by induction that all the coefficients Xik  and Cik can be 

obtained recursively using (20) and (23). 

Alternatively, suppose that we have the sequences { X i k ,  c i k ,  k 1 0) which satisfy 

(19) and (23), where c j k ;  is an arbitrary complex number for each k, and where c i o  = e;. 
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Pre-multiplying (23) by (A;, I - A,) and using (19) for the it'' row results in (21) which 

implies (19). If the power series ( 5 )  and (6) converge for the above sequences, it follows 

that X;(p)  and z ; ( p )  form an eigenvalue-eigenvector pair for the matrix A(p)  within the 

mutual convergence region of (3), (5) and (6). 

From the preceding, it is clear that the it'' component of Cik can be selected arbitrarily 

for each k. As mentioned earlier, since the eigenvectors of a matrix are only determined up 

to scalar factor, it is not surprising that the coefficients of the expansion for the eigenvectors 

have a degree of freedom. One approach is to  select C;k; so as to simplify the formulae and 

computation of x;k  and c ; ~ . .  An obvious choice would be 

(24) 
T C ; k ; = e ; c ; k = O  , k z l  , l < i < n  . 

This selection would result in selecting the eigenvector z ; ( p )  which satisfies 

Thus, unless the eigenvector z; ( p )  is orthogonal to its corresponding row-eigenvector at 

p = 0, i.e., e: X;', the selection (24) is valid. 

With the selection of (24), or alternatively (25), the coefficients for the infinite series 

of the eigenvalues and eigenvectors become 

c;, = e; , e; A, e; = A;, , l < i < n  (28) 
T 

Finally, it is important to  note that while the eigenvectors and their coefficients are not 

unique, the eigenvalues and their coefficients are unique. In other words, no matter what 
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selection of eigenvectors is made, the numerical value obtained for A;k will be the same. 

This is very significant as it implies that the sensitivity of the eigenvalues of a linear system 

is independent of the particular representation of the system, which is a desirable property; 

i.e., sensitivity is a property of the system itself rather than its particular representation. 

B. EXPRESSIONS FOR SOME COEFFICIENTS 

Thus, we have shown that when the system matrix A(p) can be expressed in the 

form of (3), as the parameter, p ,  varies, the system eigenvalues and eigenvectors also vary 

according to (5) and (6), where the coefficients are given by (26), (27) and (28). The 

change is the eigenvalues A;(p) as p varies within the convergence region can be evaluated 

by analyzing the coefficients, A;k. Thus, using (26) and (27), 

I 

A;l = e? XF1 A1 X, e; , 15 i 5 n (30) 

is interesting to note that A i l  depends only on Al but not on higher order terms 

such as Az, As ,  etc. Having computed Ail, we can now obtain c;l and X;2. 

cil = (A;, I - A,)# (A, - A i l  I) e; , 1 5 i s n  . (31) 

Using (31) in (19), we obtain 

T 
Xi2 = e; A2 e; + eT(A1 - X i 1  I) (A;, I - A,)# (A1 - X;l I) e; , 1 5  i 5 n (32) 
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It can be shown that X i 1  and X i 2  remain unchanged if the eigenvectors are selected 

differently than (27), by using the more general expressions in (23) and (19). The resulting 

expressions for X;l and Xi2 can be reduced to (29) and (32) after some manipulation which 

will not be included here. 

From the preceding, it is clear that the coefficients for the power series for the system 

eigenvalues and eigenvectors can be easily computed using the recursive algorithms derived. 

c .  UPPER BOUNDS ON EIGENVALUE VARIATIONS 

The variations in the eigenvalues X i ( p )  as p varies can be closely approximated in the 

vicinity of p = 0 by using the first one or two terms of the power series developed and 

neglecting the remainder. While this provides the more significant information and will be 

discussed later in more detail, it is also of interest to  have a upper bound on the eigenvalue 

variations, in particular, when large variations in the parameter, p ,  are being considered. 

Usually, the large variations are of interest in order to establish characteristics such as the 

stability margin rather than the tracking control performance characteristics. 

In the following, we will develop an upper bound on the change in each eigenvalue 

using the infinite series obtained for the eigenvalues and eigenvectors. To simplify the 

derivation, we will consider the case 

A(p)  = A. + A i  p = Xo (A, + A i  p )  X,' 7 (34) 

Rewriting (26) and (27) for each i, we have 
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k 

C;k = ( A i 0  I - A o ) # [ A l  Cik-1 - A i j  c i k - j ]  3 k L 1 (37) 
j= 1 

From (36) and (37), it follows that 

where 1 1 . 1 1  denotes a compatible matrix and vector norm and, 

AX; = min I A i 0  - A j o l  , 15 i 5 n . (40) lSiSn,J#i 

Now, let {&k, Z;k; k 2 1) denote the solution to the difference equation obtained when 
I 

I the inequalities in (38) and (39) are replaced by equalities, with the initial conditions 

Also let 

00 00 

k=O k=O 

whenever the series converge. Using well-known z-transform identities, 

- 
k(P) - A;, = lie? All1 P %(P) 

1 
Z;(P) - G o  = - { 11A1II P G ( P )  + (L(P) - Xi,) G ( P ) }  A A; 

Manipulating (42) and (43), we obtain the following quadratic equation 

12 

(42) 

(43) 



After some manipulation, it can be shown that 

IXi(P)  - X i 0  

whenever 

Thus, the change in each of the n-eigenvalues has to be within the bound given by 

(47) as the parameter p varies around its reference value of zero. It is of interest to note 

that near the reference operating point, (47) can be approximated by 

It is seen that these upper bounds depend on three real variables; namely, AAi, llAl pII 

and l leT A1 pII. In other words, the upper bound is valid and remains unchanged for any 

matrix A(p)  for which these three variables are constant. This will be discussed in more 

detail in the next section. The dependence on AXi which is a measure of the closeness 

of the ith eigenvalue to the remaining eigenvalues is somewhat intriguing. From (36) and 

(37), it is seen that when two eigenvalues are close to each other, the sensitivity of the 

corresponding eigenvalues (as measured by c ; k )  to variations in the matrix is greater. The 
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greater sensitivity in the eigenvectors then produces a greater sensitivity in the eigenvalues 

to variations in the matrix. 

It is also useful to note a more conservative upper bound on the eigenvalue variations. 

From (34), it can be shown that 

I 
In many cases, upper bounds such as these are too conservative to  be useful. Note, for 

example, that at the reference of p = 0, the upper bound is not zero but IlX;, I - Aoll which 

may well be quite large. This underscores the significance of the upper bound developed 

in this section given by (47). 
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111. SOME MEASURES OF SYSTEM SENSITIVITY 

In the design of a control law, achieving a robust closed-loop system is among the 

most important goals. By a robust system, we mean one in which the significant system 

characteristics are “insensitive”, or have “little” sensitivity, to the expected variations in 

the system. For example, we may be interested in the sensitivity of location of the closed- 

loop system eigenvalues to variations in one or more system parameters. Thus, a measure 

of sensitivity would be given by the variation in one system characteristic caused by a 

variation in some other system property. 

It is important to note that a system may be insensitive to  variations in some system 

parameters but be highly sensitive to other system parameters. Conversely, some system 

characteristics may be insensitive while others are highly sensitive to the same system 

parameters. For example, a system may well have a high stability margin, but have a d.c. 

gain which varies considerably as the operating point varies. Therefore, a single number 

or a single measure of robustness may not always adequately describe the robustness of a 

system. 

It is important to note that the system eigenvalues being insensitive to expected 

parameter variations does not necessarily imply that the location of the eigenvalues is 

the best for tracking commands. In other words, it is assumed that the designer has 

found the system’s nominal response characteristics, such as the location of the system 

eigenvalues, noise attenuation, etc., to be adequate for the basic purpose of the system. 

Therefore, in this study, sensitivity analysis is intended to evaluate the extent to which the 

system’s response characteristics vary from their nominal behavior. Sensitivity analysis 

does not evaluate the system’s performance of its basic purpose; e.g., tracking a time- 

varying command, or landing an aircraft. In fact, often a high performance system will be 

sensitive to critical system parameters. 

In most cases of interest, the system considered has parameters which are either not 

known with sufficient accuracy or which vary significantly over the system’s operating 
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range. Thus, it is natural to consider the system’s sensitivity to variations in these param- 

eters. However, the designer must also consider the system’s sensitivity to a number of 

other elements such as unmodeled dynamics, nonlinear dynamic effects, transport delays, 

sampling rate variations, component failures, disturbances, biases, etc. While investigating 

all of these elements is well beyond the scope of this study, it is important to note that 

each of these cases can be studied using the approach developed. This is an important 

difference between the approach developed here and the use of a-plots as measures of ro- 

bustness. Important design questions such as the change in a critical mode or eigenvalue 

due to jitter in the sampling rate or other parameters cannot be readily formulated using 

the latter approach. 

Possibly the most important of the elements mentioned above is the case of unmodeled 

dynamics. The way in which unmodeled dynamics affect the sensitivity of a system will 

be discussed next. 

A .  U N M O D E L E D  D Y N A M I C S  

Most physical systems of practical interest are relatively complex nonlinear systems. 

To simplify their analysis, these systems are linearized at specific operating conditions 

within a operating range of interest and their approximations are introduced by neglecting 

terms of relatively small magnitudes. When the neglected terms contain variables which 

are themselves generated by a dynamic system, the effect of the approximation is difficult 

to assess and must be dealt with considerable care. 

While the neglected terms are generally of second order, the closed-loop system may 

nevertheless have desirable characteristics which are sensitive to these admittedly small 

terms. To avoid high sensitivity to unmodeled dynamics, attention must be paid in the 

design of the control law. 

Consider the system 

&n = A m  Xm + Am, xu + B ~ u  9 
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where z m  and xu are the modeled and unmodeled state vectors, respectively. The term 

A,, xu is neglected, the usual justification being that the part of 5, due to the term 

A,, 2, is much smaller than the part due to Bmu. Thus, the modeled part of the system 

is 

This is equivalent to simply setting Am, equal to zero in the “true” system given by 

(52) and (53), where the unmodeled state, z,, now has no impact on the modeled state, 

5,. Therefore, the eigenvalues of the modeled system are those of Am and A ,  as can be 

seen from the system matrix 

where Am, has been set to zero. It can be shown that the matrix whose columns are the 

eigenvectors of A, can be partitioned as 

xo= ( xrn ;,) , x;l= 
XlLm 

where X ,  and Xu are the eigenvector matrices of Am and A,, respectively, and 



~ 

Now the actual system matrix A differs from the modeled system matrix A,, by A A  

Thus, for this system 

Using (29) and interpreting p to be unity, the first order change in the "true" eigen- 

h,(Xi) = AUm(Ai1- Am)-' Am, 9 nm + 1 I i I n m  + n u  (65) 

If the matrix A, also varies by AAm, then the combined first order change in the 

"true" eigenvalues would be 

From (66), it can be seen that up to first order, the effect of unmodeled dynamics on the 

system eigenvalues is essentially the same as that of parameter variations. When dealing 

with unmodeled dynamics, the transfer function, hm(s), evaluated at the i fh  eigenvalue of 

the model takes the place of the system parameter variations, AAm. 

18 



It is important to  note that whereas AAm is usually a real matrix, hm(Xi) is usually 

a complex matrix whose elements have both magnitude and phase. So that unmodeled 

dynamics of the same magnitude as parameter variations may produce larger changes in 

the corresponding eigenvalues if their phases are appropriately aligned. Thus, the system's 

sensitivity to magnitude and phase variations is a measure of robustness with respect to 

unmodeled dynamics. 

Due to the mutual coupling of the modeled and unmodeled dynamics, the eigenvalues 

of the unmodeled dynamics also vary as the coupling, Am,, between the modeled and 

unmodeled, varies. This can be seen by observing (63) and (65). Therefore, if appropriate 

attention is not paid, the unmodeled dynamics may produce unacceptable and sometimes 

unstable modes. 

As can be seen from (64) and (65), in order to neglect dynamic modes satisfactorily, 

hm(Xi) and h,(Ai) must be small. For the transfer functions hm(Xi) and h,(Xi) to  be small 

it is necessary that the coupling terms Am, and A,, be small, and, in particular, for the 

eigenvalues of Am and A ,  to be far apart from each other. The latter condition implies 

that the terms ( ( A i 1  - Am)-',  1 5 i 5 nm} and ((Xi1 - A,)-' ,  n, + 1 5 i 5 n, + nu} 
are sufficiently small. It is important to note if the unmodeled dynamics have eigenvalues 

within the same range as the closed-loop modeled eigenvalues, then problems are likely 

to arise except for special circumstances. Thus, if the two sets of eigenvalues are not 

sufficiently separated, it is a safer policy not to neglect the modes under consideration 

in the system model. The use of stochastic optimal output feedback is usually quite 

convenient in such cases. 

In many cases of practical interest, it is convenient to neglect the dynamics associated 

with the control actuators and with the sensors used for feedback. This can reduce the 

order, hence the complexity, of the system under consideration significantly. Also the 

higher order structural modes of a physical system as well as the higher harmonics of the 

electronic subsystem are usually neglected. These unmodeled dynamics usually consist of 
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higher frequency modes than the modeled modes. 

From the previous discussion and (62) - (66), it is clear that to obtain insensitivity to 

unmodeled dynamics, it is necessary that the designed closed-loop eigenvalues be separated 

from the unmodeled eigenvalues. Since these unmodeled eigenvalues are of high frequency 

and can vary significantly, it is desirable to design the closed-loop eigenvalues with suffi- 

ciently low natural frequencies so as not to excite the unmodeled eigenvalues. Therefore, 

unmodeled dynamic effects place an upper limit on the closed-loop eigenvalues and on the 

gains that can be used in the control law design. System sensitivity to other effects also 

place an upper limit on the closed-Ioop eigenvalues, as will be seen in the following section. 

When considering the system sensitivity to unmodeled dynamics using the approach 

developed here, it is clear that the control law to be designed must not result in closed- 

loop eigenvalues which are “too far” into the left half-plane or too high frequency. In other 

words, the control law gains must not be “too high” if we are to avoid high sensitivity 

to unmodeled dynamics and maintain robustness. While most control designers of actual 

systems know the rule-of-thumb that “high-gain” control laws produce problems, usual 

robustness measures do not reflect the trend of high sensitivity introduced h-? high gain 

systems. 

B.  AN U N M O D E L E D  SENSOR DYNAMICS E X A M P L E  

The meaning and usefulness of the measures of sensitivities being developed in this 

study would be better appreciated when applied to  an example. We will select a simple, 

but representative, example to illustrate each of the measures investigated here. 

Consider a projectile which is approximated by a point mass m. The velocity and 

thrust along the x-direction are u z ( t )  and T,( t ) ,  respectively. It is assumed that the 

altitude profile is independently controlled by the vertical component of the thruster, T,. 

As the nominal system, we will assume that the drag on the projectile is negligible; so that 

the nominal system is given by 
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x = v,  , (67) 

Tz v ,  = - 
rn 

Suppose that we want to design a control law which regulates the velocity u Z ( t )  about 

a commanded value u,,. We would like to have no steady-state error in the presence of 

steady winds, and despite the fact that the mass, m, may vary f 10% due to loss of fuel 

during flight and variations in the initial mass, and that the aerodynamic forces can be 

reduced to the drag force resulting in 

(69) 
- 1  
m 

6, = -a2 v ,  + - T, + w , 

where the coefficient a2 may vary within the set [0, .2] and w ( t )  is a Gaussian white noise 

process with zero mean. 

Let us formulate the nominal state model for this problem in the following way. 

k, = z 2  - Z 7 

i z = b t l + w  . (73) 

Note that x1 is the integral of the velocity error. Th,; control struc,Jre is chosen 

specifically to meet the requirement that the steady-state velocity error be zero. Using the 
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Stochastic Optimal Feedforward/Feedback methodology, close the loop using any accept- 

able feedback design. 

Suppose that the following controller meets the designer’s closed-loop requirements. 

where u contains the feedforward terms. 

Closing the loop, we obtain 

51 = x 2 - z  , (75) 

In this section, we will investigate the implications of unmodeled dynamics on this 

system using the sensitivity measure developed in the preceding section. In the following 

sections, the same system will be investigated using the system sensitivity to other ele- 

ments. Where convenient, the sensitivity measures developed here are compared to other 

robustness measures. 

From the feedback control law shown in (74), it is clear that a measurement of the 

velocity, 5 2 ,  is necessary to implement the controller; 51 can be computed as part of the 

control law and therefore is known. 

Suppose that this velocity is being measured using an on-board sensor which may be 

described by 

5u = -CY Z U  + a  2 2  + wu , a r o  (77) 

where xu  is the actual sensor output and wu is the random sensor noise. The neglected 

sensor dynamics may produce effects which must be accounted for. Sensors which have 

relatively fast dynamics (i.e., relatively high CY value) can justifiably be neglected in the 
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design model provided that the control designer places appropriate restrictions on the 

control law. As will be apparent from the following, significant consequences may result 

from neglecting even fast sensors if the control law is not properly designed. 

To investigate the effects of the unmodeled sensor using the sensitivity measure de- 

veloped in the last section, first note that the actually implemented control law will not 

be (74), but will be 

u = -kl X I  - k2 X, + u . (78) 

To put the example into the form used in the last section, we rewrite the closed-loop 
~ 

I system with the change of variables 

A i u  = +b kl  ~1 + b k2 ~2 - (CY - b k2)  AzU - b u + (wU - W )  

Thus, the closed-loop system matrix for the state vector ( X I  5 2   AX,)^ is 

0 1 0 
A = ( -bkl -bk2 

bkl bk2 -(a - bk2)  
(83) 

~u = - ( a - b k 2 )  3 Amu = ( - :k2)  3 Aum = (bkl bk2) - (84) 

From (82) as well as (83) and (84), it is clear that as the gain k2 increases, the 

dynamics for Axu in (82) becomes less stable, until it actually becomes unstable! It is 
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seen that high gains have the tendency of making a system highly sensitive to unmodeled 

dynamics. 

To compute the sensitivity to  unmodeled sensor dynamics, we first obtain the transfer 

function, hm(A;), given by (64). 

The sensitivity of the system eigenvalues to the unmodeled sensor dynamics can be 

found to be 

Observing (86), the basic elements that affect robustness with respect to  unmodeled 

sensor dynamics become clear. The system sensitivity to  unmodeled sensor dynamics 

increases as 

I 

1) the control gains k l  and k2 increase 

2) [A;, + cx - bkzl decreases 

3) the distance between the eigenvalues, [A10 - A201 decreases. 

Most control designers quickly become aware of the fact that as the feedback gains 

are increased, the system robustness is significantly reduced. However, if the system gains 

are kept low, the control performance during transients due to disturbances or noise is not 

satisfactory. Determining gains which are high enough for acceptable transient response 

and tracking, yet which are low enough to be insensitive to  unmodeled dynamics is among 

the most difficult control design problems. The fact that  the sensitivity measure developed 



here provides insight into the reasons for some well-known rules-of-thumb in control design 

makes this measure of robustness useful. 

However, currently the most popular measure of robustness for multi-input multi- 

output systems, namely the smallest singular value of the return difference, fails to indi- 

cate that the system sensitivity to unmodeled dynamics (in fact, other elements as well) 

increases significantly with increasing control gains. In fact, just to the contrary, the mea- 

sure of robustness s e e m  to claim that as the feedback gains increase the robustness of 

the system increases. To illustrate the point, note that the smallest singular value of the 

return difference for the example system is 

where G ( j w )  is the open-loop transfer function from u to 21. It is seen that as kl and k2 

increase the smallest singular values also increase at every frequency. This implies that the 

system with the higher control gains is the more robust one. Clearly, the singular value 

of the return difference seems to contain no hint or clue about high gains causing high 

sensitivity to unmodeled dynamics which may even result in instability. 

It should be noted that this is not an anecdotal occurrence. Singular value analysis 

seem to show a preference for high gain systems in almost all situations. Let G(s) be 

the open-loop plant transfer function and K ( s )  the equivalent feedback control transfer 

function. Then, singular value analysis suggests the smallest singular value of the return 

difference matrix as a measure of system robustness; Le., 

~ 

I 
I 

As the control transfer function increases in norm, eventually the smallest singular 
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value of (90) will also increase. This implies that if the control gains are high enough, 

the system will be robust, which does not agree with the sensitivity results shown in this 

section. Therefore, is seems possible that a system be thought to be robust according to 

singular value analysis while having high sensitivity to unmodeled dynamics, as illustrated 

by the simple example in this section. Although it is possible to limit consideration to 

lower gain designs, the fact that the signular values of the return difference do not reflect 

sensitivity to unmodeled dynamics within the set limits remains unchanged. 

C .  E IGENVALUE AND E I G E N V E C T O R  S E N S I T I V I T Y  

In the previous sections, a sensitivity measure for the effects of unmodeled dynamics 

was develuped and its use was demonstrated with a simple example where the sensor 

dynamics were neglected in the design model. In this section, we will investigate the 

sensitivity of the closed-loop eigenvalues to system parameter variations. In particular, 

we will consider the location of eigenvalues, the sensitivity of the damping ratios and the 

stability margin. Finally, the sensitivity measures developed will be illustrated using the 

example of the last section. 

I 

System parameter variations are quite common in practical systems. The question 

of sensitivity of eigenvalues occurs in three related but different situations. First, it is 

desirable to know whether a relatively small change in one or many parameters produces 

an inordinate change in any one eigenvalue. If these parameters can be expected to vary 

under the operating conditions of the plant, then it may be desirable to modify the feedback 

control law to reduce high sensitivities. It is further desirable to know the direction in which 

the eigenvalue will move to evaluate whether this sensitivity is indeed undesirable. 

Second, and probably most important, it is necessary to establish that the closed-loop 

eigenvalues and eigenvectors remain within an acceptable range of values while the system 

parameters vary over the operating range. In this case, the system parameters admittedly 

will have significant variations. It is also to be expected that the system response, as 
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described by its eigenvalues and eigenvectors, will have correspondingly non-negligible 

variations. It is important however, that the system response remain within an acceptable 

range. In cases where this is not possible, it becomes necessary to use gain scheduling 

or nonlinear designs in order to maintain the system response satisfactory throughout the 

operating range. 

Finally, the designer must consider at least some of the more common, but accidental, 

large parameter variations. For example, component failures, accidental human errors, etc.; 

in other words, situations which are not within the normal operating modes, but which 

may at  least temporarily occur. In such cases, it is desirable that the system maintain its 

stability, even if the system response is not within the satisfactory range. 

Now consider an analog or digital system described by (1) or (2), respectively. Suppose 

that the control designer has selected the following control laws using the feedback vector, 

Y .  

f l r .  \ 

where u and U k  represent analog and discrete sensor noise and errors, and ti and a k  are 

the analog and discrete feedforward controls, respectively. Closing the loop with these 

controllers, 

k = ( A - B K C )  x + B i i + w - B K u  , (93) 

(94) 

where w and W k  represent analog and discrete plant noise, respectively. 
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The feedback design may be obtained using any method which pays the necessary 

attention to the stochastic plant and measurement noises as well as the requirements of 

the feedfonvard controller. These include classical and modern, frequency and time domain 

approaches to control design. However, in this study, the method of feedback design is not 

relevant. Whatever the method used, here we would like to develop criteria which will help 

evaluate the sensitivity of the closed-loop system response to system parameter variations. 

First note that, from (93) and (94), we are interested in the sensitivity of the eigen- 

values and eigenvectors of the closed-loop system matrices ( A  - B K C) or (4 - I' K C) 

according to whether the system is continuous or discrete, respectively. Since the form of 

both system matrices is the same, we will treat only ( A  - B K C) with the realization that 

A and B can be replaced in the formulas by q5 and r, respectively, when dealing with a 

discrete system. 

1. Small Parameter Variations. 

When considering small changes in the system parameters, it is usual to use the first 

derivative of the eigenvalue with respect to the parameter as a measure of sensitivity. 

Observation of the infinite series representation in (5 )  reveals that the first term, A i l ,  is in 

fact the derivative of the ith eigenvalue with respect to the parameter, p. From (29), it is 

seen that if the system matrix varies in the form of 

Then the sensitivity of the i th eigenvalue, Xi09 to the parameter p may be defined as 

I where X o  is the eigenvector matrix of (Ao - Bo K C); Le., the nominal closed-loop system 
I 

matrix. 

A measure of the average sensitivity can be obtained by 
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It should be noted that while Sp may provide a quick idea of the eigenvalue sensitivity, 

the information about the direction and the particular eigenvalue has been eliminated in 

the process. 

Now, consider the (i, j) element of the system matrix to be the parameter in question; 

then we can define the (i, j )  element of the Sensitivity Matrix, say S, as 

where X;' and Xij are the ( i , j )  elements of X;' and X, ,  respectively. 

In other words, the ( i ,  j )  element of the Sensitivity Matrix is the average change in 

the system eigenvalues due to a unit change in the ( i , j )  element of the closed-loop system 

matrix. 

A first order approximation to the Stability Margin Matrix, M ,  may be obtained by 

~ 

It is seen that Mij is the change in the ( i , j )  element of the closed-loop system matrix which 

would produce instability, assuming the first order approximation holds. The matrix M 

provides relative, local information about the stability margin. Higher order approxima- 

tions of the stability margin can be obtained by adding more terms such as X i 2 ,  Xis, etc. 

In other words, using a higher order approximation of the power series for the eigenvalue, 

it is possible to  obtain as much accuracy about the stability margin as required. 
l 

A qth order longitudinal dynamics model for a Boeing 737 aircraft at different air- 

speeds is analyzed in Tables 1, 2 and 3 using the Sensitivity Matrix and the Stability 

Margin Matrix proposed above. In Table 1, the aircraft nominal speed is 125 knots (V,). 

The parameter under consideration, p ,  is defined as the deviation of the airspeed from the 



selected nominal value. The aircraft dynamics, hence the system matrix, A(p) ,  varies with 

the deviation from the nominal airspeed as shown in Table 1. The Sensitivity Matrix indi- 

cates the relative impact of the system matrix elements on the eigenvalues. For example, 

the average change in the absolute value of the system eigenvalues to a unit change in the 

(2, 1) element is 0.255, while for the (3, 1) element it is 30.3 and for the (2, 4) element it 

is 0.00196, up to first order. 

It is clear that the aircraft eigenvalues are highly sensitive to the (3, 1) element of the 

system matrix, whereas the sensitivity to the (2, 4) element is quite small. Therefore, the 

relative importance of the various elements of the system matrix is easily seen by observing 

the Sensitivity Matrix. On the other hand, if the airspeed varies from the nominal value 

by 1 knot, all the system elements vary simultaneously. In that case, the average change 

in the eigenvalues is given by S, which is 0.00998 for the example in Table 1. 

Two measures of stability margin are shown in Tables 1, 2 and 3. M is the margin to 

real parameter changes, whereas Mu is the margin to  unmodeled dynamics. As shown in 

Section I11 A (Eq. 66), the first order change due to unmodeled dynamics can be obtained 

by replacing the real parameter variation matrix (AA,) by the unmodeled transfer func- 

tion matrix, h m ( X k ) .  Thus, the elements of Mu are defined as the change in hm(Xk) which 

would produce instability, assuming a first order approximation and noting that hm(Xk)  is 

a complex-valued matrix. From Table 1, it is seen that the stability margin to unmodeled 

dynamics is smaller than the margin to parameter variations. Thus the relative stability 

margin of the system elements can be obtained by the matrices M and Mu. 

2. Large Parameter Variations. 

The local eigenvalue sensitivity measures described in the last section are quite valu- 

able in evaluating the local robustness qualities of a system. On the other hand, in most 

design problems, it is necessary to consider a larger region about the nominal operating 

point and make sure that the system response remains within satisfactory bounds. 

The usual way of thinking of system sensitivity, or robustness, is that it can be de- 
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scx.,ed by a number, a set of numbers and, in the case of singular value analysis, a function 

of frequency. These approaches provide useful information about the sensitivity of a sys- 

tem. In this section, we will introduce a new way of thinking about system sensitivity and 

robustness which, in our opinion, is better equipped to deal with realistic design problems. 

In most control design problems, the design engineer has an operating range, i.e. the 

set of operating points, and a set of acceptable system response variations from a nominal 

acceptable response at  the nominal operating point. For current purposes, we will limit the 

system response to characteristics which can be determined from the closed-loop system 

eigenvalues, such as natural frequency, damping ratio, stability, etc. 

I 

I 

Thus, the main question is whether the system eigenvalues remain within the accept- 

able region while the system matrix varies within the operating range. It is important to 

keep in mind that not all the elements of the system matrix are subject to variation or 

uncertainty. Many elements of the system matrix remain completely constant throughout 

the operating range. Therefore, it is important to make use of such information to the 

extent possible. 

When the parameter variations within the operating range are large, the sensitivity 

measures described in the last section are not applicable. However, the upper bound 

obtained in Section I1 C becomes a very useful tool both quantitatively and in providing 

insight on the design process. Now, let 

(100) A = A - B K C  , ~ o = A o - B o K C o  

A A  = A - A.  = A A -  A B  K C  - Bo K A C  

A h  = Xrl AA Xo  



A 1; 
A A; 9 

x;  = - Ire? 41 9 P i = -  Il AAll 
ai = 11AA11 

Then the upper bound in (47) can be rewritten as 

1 L i l n  (103) 

Thus, given the amount of variation in the open-loop parameters, namely AA, AB and 

AC, (104) provides a limit on the change in every eigenvalue when the three parameters 

a;, Pi,  AX; are known. It is important to have individual limits for each eigenvalue, because 

large and complex systems tend to have eigenvalues at widely varying locations of the 

complex plane. 

A few remarks are worthy of note. Possibly, the most significant point is that the 

change in eigenvalues is still monotonic with AA even though we are no longer dealing 

with the first order variations, but rather the total change as bounded by (104). 

It should be noted that whereas the system response is largely dependent on the 

location of the eigenvalues, the system sensitivity is highly dependent on the eigenvectors; 

i.e., the columns of X,. It follows that the system eigenvectors should be selected so as to 

minimize the effects of the largest variations in the system parameters; i.e., AA,A.B and 

AC. 
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From (103) and (104), it is seen that the relative location of the eigenvalues also plays 

a role in the sensitivity of the eigenvalues due to AX;, or the minimum distance between 

the ith eigenvalue and the remaining ones. This dependence appears to  be not as strong. 

If the eigenvalues and eigenvectors of the system matrix can be selected independently, 

it would seem that the eigenvalues would be selected to produce the necessary noise attenu- 

ation, transient response, feedforward bandwidth requirements, etc. Then the eigenvectors 

could be selected to minimize the system's sensitivity to parameter variations resulting in 

X, A, X;' as the closed-loop system matrix A,. 

However, in most systems of practical relevance, the eigenvalues and eigenvectors can- 

not be selected independently. If the feedback gains are selected to place the eigenvalues, 

usually the eigenvectors are also fixed, and the system may have very high sensitivity. 

Thus, pole placement alone does not usually result in acceptable robustness. Since plant 

and sensor noise as well as other considerations must also be included, the use of stochas- 

tic optimal output feedback multi-configuration control techniques are useful in trying to 

achieve an acceptable compromise among the various goals of feedback compensation for 

a given task. 

The extent of variation or uncertainty among system parameters can vary consid- 

erably. While some parameters representing kinematic relationships do not vary at  all, 

others may double. Therefore, i t  is desirable that our measure of sensitivity be able to ac- 

commodate such important information about the structure of variations. A system which 

is sensitive to parameters with low or no variability, but which is insensitive to parame- 

ters with high variability should be considered robust. Since the elements of AA, A B  and 

A C  which do not vary can be set to zero in computing IIA All, a; and p;, the structural 

information about the extent variability is automatically included in the upper bound of 

the eigenvalue change. When such structural variability is not specifically taken into ac- 

count, the full condition number of the closed-loop system matrix 2, would determine the 

sensitivity. 
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Another significant property about the sensitivity measure in (104) is that it provides 

upper bounds for each eigenvalue. For example, suppose the closed-loop system has a pole 

close to the origin, while the remaining eigenvalues are farther in the left-half-plane. The 

mere fact that a pole is near the origin does not, of itself, imply that the system has low 

stability margin. What is important is the sensitivity of the pole to parameter variations. 

Often the poles far in the left-half-plane are the first to  become unstable. 

From (104), it can be shown that if the ith row of X;' (Le., the ith row eigenvector of 

A, is orthogonal to the change in the system matrix, AA, then the ith eigenvalue remains 

unchanged. In fact, if a; is small, then the total change in the ith eigenvalue will also 

be small. In other words, if some eigenvalues need to  be more robust than others, then 

this insensitivity may be obtained by making the corresponding row eigenvector nearly 

orthogonal to  the system variations; i.e., a; k: 0. 

It should be noted that the norms in (103) for a; and p; can be arbitrarily selected 

matrix norms. For example, if the 2-norm is used, then I / A  AI I is the largest singular value 

of A b .  Other norms such as the 1-or the co-norms may sometimes be more convenient. 

For a k e d  p; in (104) the change in the eigenvalue [A; - A;,I is monotomic with a;. 

Therefore, if a; is set equal to 1, the inequality in (104) still holds. 

It is sometimes more convenient to use the normalized variable z; instead of the upper 

Making this substitution and after considerable manipulation it can bound of [A; - 

be found that 

This equation is equivalent to (104) where z; is the upper bound on the change in the 

ith eigenvalue normalized by AA;, except that it solves for p; in terms of z; and a;. Note 
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that the normalization has eliminated the variable AA;; so that it is no longer explicitly 

shown in the equation. Figure 1 shows the class of plots of p; versusx; at  various levels of 

a;. 

It is also possible to ask the reverse question: If it is required that eigenvalues of the 

system remain within given regions, what is the region of operating points, or the set of 

system parameters, which can be allowed? i.e., what is the operating regime? 

I 

A straight-forward approach to answer this important question may be developed as 

follows. Suppose the required regions for the eigenvalues can be expressed by 

and 

Then, it can be shown that any AA such that 

is in the acceptable operating range, in the sense that the system eigenvalues will satisfy 

(109). The selection of a; is not always straight forward. In such cases a; = 1 may be 

used, although this is likely to produce conservative results. 

Thus, with the procedure presented, it is possible to see if a variation in the system 

parameters produces an acceptable variation in the each eigenvalue. Or conversely, given 
I 

an acceptable range of variation for each eigenvalue, a set of parameters within which 

the system eigenvalues are each within their acceptable range can be obtained. These 

procedures will be illustrated using the example system introduced in the last section. 

, 

Finally, it is seen that while only the diagonal elements of the matrix Ad are needed 

to obtain the derivatives of the eigenvalues, the sensitivity to larger parameter variations 
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is influenced by all the elements of AA. Furthermore, the variations in the eigenvectors 

are also highly influenced by all the elements of AA. Finally, the sensitivity of the system 

transfer function is also directly proportional to AA, but is beyond the scope of this 

investigation. 

Therefore, the sensitivity of a system cannot be fully understood or evaluated by only 

the diagonal elements of AA, but must consider the complete matrix. From Figure 1, it is 

clear that the eigenvalue sensitivity and the norm 11AA11 are monotomic. The slope of the 

relationship is determined by ai which contains information about the particular row of 

AA. Therefore, when only the relative sensitivity of two systems is needed, as in a design 

optimization, lleTAAll and 11 AAll provide a relative sensitivity measure that can be useful. 

In particular, recall the approximation 

Now, we return to the example introduced in Section I11 B to illustrate the use of the 

sensitivity analysis procedures developed in this section. The open-loop system is given by 

(72), (73), the control by (74) and the closed-loop system by (75), (76). The closed-loop 

matrices of interest can be found to be 
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I After some manipulation, 

Figure 2 shows the closed-loop eigenvalues and the regions which the designex 

where Ala, A20 are the nominal closed-loop system eigenvalues. 
~ 

As mentioned in Section I11 B, the drag term Aa2 x2 and the mass vary within limits 

, which can be approximated by 

The designer of the feedback controller selects the gains kl  and kz based on a number 

of objectives imposed by the task at hand such as the transient response requirements, 

measurement and plan noise suppression, the bandwidth of the class of feedforward com- 

, 
I 

I 
I mands, sensitivity to system parameters and unmodeled dynamics, etc. Once the selection 

of the feedback gains is made, it is of interest to check whether the eigenvalues of the 

closed-loop system remain within acceptable bounds for the other control objectives as the 

parameters Aa2 and Ab take on various values. The procedure developed in this section 

may be used for this purpose. 

Now, suppose that, using the nominal system, the designer has selected gains 

bokl  = 2  , bo k2 = 2 

which correspond to the critically damped eigenvalues i 
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pi 5 0.1414 , ai = &/2 

Using (104), we find that 

I The eigenvalues are seen to remain within an acceptable region as Aa2 moves within 

its expected limits. Clearly, using a nominal design system with an a2 value of 0.1 would 

reduce the change Aa2 to [-.l, .l] and would have further margin. Also note that the value 

obtained is a conservative upper bound. On the other hand, the first order variation 

also provides important information about the eigenvalue changes, but does not contain 

information about the eigenvector variations. In many cases, A i l  and Ai2 may provide 

sufficient accuracy. On the other hand, change in b produces a simultaneous variation in 

both system parameters. From (119), 



Using (104), 

which is also within the acceptable region. When both AQ and Ab vary, the upper 

bound will exceed the acceptable region. However, the region obtained is still not that 

large considering the conservative nature of the upper bound. A different design may be 

necessary if the damping requirements must be maintained. 

On the other hand, it is possible to characterize the set of parameters which guarantee 

the eigenvalues remain within their acceptable regions. 

Using (108) with a equal to &/2, and substituting into (119) and manipulating 

- 1 lXTo (e) - Au21 5 .204 2 

Further manipulating, 

( g)2 + ( (e) + A u ~ ) ~  5 .0832 

From (128), it can be seen that an operating where 

5 .1 and .17< ha2 5 .17 
Ab 

I can be guaranteed to remain within the acceptable region of eigenvalues. However, if 

Aa2 = 0, then b may vary by over f 20%, while at a fixed bo, At22 may vary within [-.288, 

.288]. 

I 
I 

Finally, from (119), (121) and (125), it may be noted that insensitivity of eigenvalues 

and eigenvectors with respect to system parameters does not lead towards the choice of 
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high control gains, whereas high gains can lead to high sensitivity to unmodeled dynamics. 

Therefore, the smallest singular value of the return difference, as shown in (89), seem 

to be more a measure plant noise suppression and fast transient response characteristics, 

rather than the sensitivity of system characteristics to plant parameters. 
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IV. CONCLUSIONS 

In the design of the feedback control law, the closed-loop system’s robustness is among 

the most important considerations. By robustness, we mean that the system characteristics 

are sufficiently insensitive to expected system parameter variations to continue to perform 

the basic system objective in an acceptable manner. The expected system parameters 

considered here are the variations of the open-loop system matrices ( A ,  B, C) over the 

desired operating range, uncertainties in these parameters and neglected unmodeled system 

dynamics. 

In this report, some measures of eigenvalue and eigenvector sensitivity which are 

applicable to both digital and analog systems are developed and investigated. Since the 

eigenvalue and eigenvectors of the closed-loop system completely specify the feedback char- 

acteristics of the closed-loop system, if the eigenstructure of the system remains within 

acceptable limits defined by the feedback designer, then the essential system characteristics 

also remain within acceptable limits, resulting in a robust system. 

Formulating the system matrix as a function of a parameter, p ,  the eigenvalues and 

eigenvectors are expressed in a power series representation. The coefficients of both power 

series can be obtained from a recursive difference equation. Therefore, the variations in 

the eigenvalue and eigenvectors can be obtained as a function of p with as much accuracy 

as desired. Finally, an upper bound on the change in each eigenvalue and eigenvector is 

obtained. Due to the development of these infinite series representations, it is no longer 

necessary to constrain the sensitivity analysis only to first derivative information. A more 

complete exploration of the implications of the power series representation is left for future 

research. 

A new sensitivity measure is developed by considering the effects of neglected un- 

modeled dynamics. Since almost any physical system is modeled neglecting some of the 

dynamics, this measure of sensitivity is useful in most applications. This sensitivity mea- 

sure indicates that neglecting dynamics affects the actual system eigenvalue variations in 
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direct proportion to its transfer function evaluated at the modeled eigenvalues. Thus, the 

closer the modeled and unmodeled eigenvalues get, the larger the sensitivity, and con- 

versely. Since most unmodeled dynamics are high frequency effects, this sensitivity places 

a limit on the magnitude of the gains that can be used in the feedback law. 

This property is demonstrated by considering a simple system design where the dy- 

namics of a velocity sensor is neglected in the design model. It is demonstrated that 

a high-gain feedback results in high eigenvalue sensitivity. This demonstrates that high 

gains cause robustness problems due to unmodeled dynamics rather than just high control 

activity. 

Analyzing the same example with the smallest singular value of the return difference, 

it is seen that this singular value is not a reliable measure of eigenvalue and eigenvector 

sensitivity, but may be more appropriate as a measure of plant noise suppression and fast 

transient response. 

Finally, a measure of sensitivity to system parameter variations is developed using 

the upper bound previously obtained. This is used to establish the robustness of a system 

by showing that the expected system parameter variations produce eigenvalue variations 

within acceptable regions. The sensitivity measure also increases with high feedback gains 

although not to the same extent as sensitivity unmodeled high frequency dynamics. 
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TABLE 1 

E I G E N V A L U E  S E N S I I V I T Y  (S)  A N D  S T A B I L I T Y  M A R G I N  
M A T R I C E S  F O R  L O N G I T U D I N A L  D Y N A M I C S  

O F  A S M A L L  J E T  A I R C R A F T  

ANALYSIS PARAMETER: AIRSPEED v IN KNOTS 

4 4  = A0 + A l p  , p = (V - V,) 

NOMINAL FLIGHT CONDITION FOR A, 

Vo = 125 knots , q$ = 0. , Wt = 80,000. Ibs. , c.g.0 = .2 

U W 9 e 
-.409E-01 .965E-01 -.540E+01 -.322E+02 -. 266E+OO -. 72BE+00 .216E+03 -. QObE+OO 
-.521E-03 -. 6216-02 -.522E+OO .28OE-lS 

.000E+00 .000E+00 .100E+01 .000E+00 

A0 

XO = -A32 f j 1.15 ; --.Old1 f i -16 

A i  
U W Q 8 

.573€-03 .290E-02 -.690€+00 .331E-02 

.755E-04 .153E-01 -.175E+01 - . l l l E + 0 0  

.187E-04 .6OZE-04 .41&E-02 -.191E-15 . OOOE+OO .000E+00 .000E+00 .00(3E+00 

Sensitivity 
S 

U W 9 e s P = . 9 9 8 E - 2  
.353E+OO .976E-01 .524E-03 .18&E-02 
.255E+O0 .357E+OO .191E-02 .196E-02 
.303E+02 . &54E+02 .351E+OO .309E+OO 
.705E+02 . l l l E + 0 2  .598E-01 .365E+OO Mp = 64.1 

Stability Margin 
M M u  

U W 9 e U W 9 e 
.~EIJE-OI .~EME+OO .340~+02 .JI~E+O~ -282E-01 .161E+00 .338E+02 .544E+Ol 
.776E+O0 .126E+01 .194E+03 .796E+01 -390E-01 -2J lE+00 .469E+02 .753E+Ol 
.272E-01 .542E-01 .128E+01 .664E-01 -329E-03 .212E-02 .39.5E+00 .636E-O 1 
.114E+01 .178E-01 .881E+00 .ZB4E-O1 -141E-03 -909E-03 .170E+00 -272E-01 
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TABLE 2 

EIGENVALUE S E N S I I V I T Y  (S) A N D  S T A B I L I T Y  MARGIN 
MATRICES FOR LONGITUDINAL D Y N A M I C S  

O F  A SMALL J E T  A I R C R A F T  

ANALYSIS PARAMETER: AIRSPEED v IN KNOTS 

NOMINAL FLIGHT CONDITION FOR A ,  

V, = 135 knots , $ = 0. , W t  = 80,000. lbs. 9 c.g.0 = .2 

A, = -.777 f j 1.25 ; -.0161 f j .137 

s Sensitivity 

U W 9 e 
.3S2E+00 .906E-01 .452E-03 .159E-02 
. 2 6 5 E + 0 0  . 3 5 8 E + 0 0  . 1 9 4 E - 0 2  ,176E-02 

.819€+02 .126€+02 .513E-01 .366E+00 

.377E+02 . 6JSE+02 .35CJE+OO .29ZE+OO 

Sp = .979E-2 

Mp = 72.2 

M Stability Margin M u  
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TABLE 3 

E I G E N V A L U E  S E N S I I V I T Y  (S)  A N D  S T A B I L I T Y  M A R G I N  
M A T R I C E S  F O R  L O N G I T U D I N A L  D Y N A M I C S  

O F  A S M A L L  J E T  A I R C R A F T  

ANALYSIS PARAMETER: AIRSPEED v IN KNOTS 

NOMINAL FLIGHT CONDITION FOR A,  

Vo = 115knots , $ = 0. , W t  = 80,000. lbs. 9 c.g.0 = .2 

A0 = -.581 f j 1.06 ; -.0125 f j .174 

A o  
U W 9 e 

-.352E-Q1 .127E+00 -. 127E+Q2 -.321E+02 
-.286E+00 -.67QE+Q0 .198E+Q3 -.207E+Ql 
-.332E-03 -.568E-Q2 -.481E+QQ -.448E-14 
.000E+Q0 .000E+00 . 1 OOE+O 1 .000E+00 

S 
U W 9 t9 

.355E+QQ . 10 lE+QO .579E-03 .204E-02 

.253E+Q0 .359E+O0 .192E-02 .113E-02 

.304E+Q2 .653E+Q2 .349E+OQ .335E+OQ 

.649E+Q2 .978E+Q1 .656E-Q1 .366E+OO 

A1 
11 W 9 e 

.573€-03 .290E-02 -. 69QE+Q0 .33 1E-02 

.755E-Q4 .153E-Q1 -.175E+01 - . l l lE+QQ 

.187E-Q4 .602E-04 .416E-Q2 -. 196E-15 . QOQE+QO . 00QE+00 .000E+Q0 .OQ0E+OQ 

Sensitivity 

sp = .996E-2 

Mp = 58.7 

Stability Margin 

A4 
U W Q 6 

.252E-Q1 .176E+Q0 .255E+O2 .247E+02 

.3Q2E+Q1 .115E+01 .151E+03 .653E+01 

.777E+Q0 .121E-01 .62QE+00 .254E-01 
-207E-0 1 - 5 1 8E-0 1 - 1  19E+Ql -545E-0 1 

U W 9 6 
.250E-Q1 .173E+00 .254E+Q2 .443E+O1 
.35QE-Q1 .242E+Q0 .356E+02 .622E+Q1 
.292E-03 .202E-Q2 .297E+OO .519E-01 
.137E-Q3 .944E-03 .139E+Q0 .243E-01 
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